\qquad

2-dimension Linear Least Squares

1. Suppose we believe that a variable z is dependent on two variables x, y via a linear relationship $z=a x+b y+c$, and we are given n data points : $\left\{\left(\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right], z_{i}\right): 1 \leq i \leq n\right\}$. How would you proceed to find a, b, c so as to minimize:

$$
\sum_{i=1}^{n}\left(z_{i}-a x_{i}-b y_{i}-c\right)^{2} ?
$$

2. Let $\mathbb{X}=\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ equipped with Binary addition structure. Consider the XOR (exclusive OR function) on \mathbb{X}, i.e

$$
\operatorname{XOR}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=0, \quad \operatorname{XOR}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=1, \quad \operatorname{XOR}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=1, \quad \operatorname{XOR}=\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=0
$$

The above is the true relationship but you are not told that. You are given the following data set of $\left(\left[\begin{array}{l}x \\ y\end{array}\right], z\right)$,

$$
\left\{\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], 0\right), \quad\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right], 1\right), \quad\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right], 1\right), \quad\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right], 0\right)\right\}
$$

(a) Assume z is a linear function of elements in \mathbb{X}. Find the best linear fit. (Note: Take care to use Binary addition when applicable)
(b) Let

$$
W=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], w=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], c=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], b=0
$$

and

$$
h\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=w^{T}\left(\max \left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right], W^{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]+c\right\}\right)+b
$$

i. Evaluate $h\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$ for $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{X}$
ii. Evaluate $\sum_{i=1}^{4}\left(z_{i}-h\left(\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]\right)\right)^{2}$
(c) In the previous question : can you device a procedure by which you can find W, w, c, b ?

