Gradient Descent: A method used to find the minima of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The algorithm is as follows:

Step 1: Choose an initial point $x^{(0)}$ in $\mathbb{R}^{n}$.
Step 2: Define $x^{(k)}=x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right)$ for some $t_{k}$ and for $k=1,2, \ldots T$.
Step 3: Choose $T$ "appropriately" or take best possible answer from the above.

1. Let $f(x)=x^{2}$
(a) Find $f^{\prime}(x)$
(b) Draw a sketch of the curve.
(c) Let $x_{0}=2, t_{k}=\frac{1}{2^{k}}$. Compute $x_{k}$ from gradient algorithm
(d) Mark $x_{k}$ on your graph and explain what the gradient descent algorithm is doing.
2. Consider the function $f(x)=x^{4}-4 x^{2}$.
(a) Calculate $f^{\prime}$ and $f^{\prime \prime}$.
(b) Using the above draw a rough sketch of the Curve and identify its global minima.
(c) Write out the steps of the Gradient descent algorithm for an arbitrary $x_{0}$.
(d) For suitable choices of $x_{0}$, decide (pictorially) where the gradient algorithm will converge to with the help of sketch that you have drawn.
3. Let $\gamma>1$ and $f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right)$.
(a) Can you guess a minima for $f$ ?
(b) Draw the level curves of $f$ at levels $1,10,100$.
(c) Let $x^{(0)}=(\gamma, 1)$ and $t_{k}=\frac{2}{\gamma+1}$ for $k \geq 1$. Calculate $x^{(k)}$ using Gradient Descent algorithm.
(d) Does $x^{(k)}$ converge and if so where ?
4. Let $f(a, b)=(a+b+1)^{2}+(3 a+b-1)^{2}$.
(a) Find the gradient of $f$.
(b) Find the critical points of $f$ and check if they are local minima.
(c) can you identify the global minima of $f$.
(d) Let $a^{(0)}=1, b^{(0)}=1$ and $t_{k}=\epsilon$ for $k \geq 1$. Calculate $a^{(k)}$ and $b^{(k)}$ using Gradient Descent algorithm.
