\qquad

1. Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 0 & 5 \\
-1 & 2 & 0
\end{array}\right]
$$

Show that the column vectors of A form an orthogonal basis for the column space of A with respect to the standard dot-product, and then find an orthonormal basis for that column space.
2. Find an orthonormal basis for the plane $x-y+z=0$ in \mathbb{R}^{3}.
3. Find QR decomposition of

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

4. Find a $Q R$ decomposition of the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
1 & 2 & 0
\end{array}\right]
$$

5. * Use the Gram-Schmidt orthogonalization process to obtain an orthonormal basis for the column space of the matrix

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 1 & 2 \\
1 & 2 & 0 & 2 \\
-1 & 1 & 0 & 1
\end{array}\right]
$$

