1. Let

$$A = \left[\begin{array}{rrrr} 1 & 2 & 0 \\ 0 & 0 & 5 \\ -1 & 2 & 0 \end{array} \right].$$

Show that the column vectors of A form an orthogonal basis for the column space of A with respect to the standard dot-product, and then find an orthonormal basis for that column space.

- 2. Find an orthonormal basis for the plane x y + z = 0 in \mathbb{R}^3 .
- 3. Find QR decomposition of

[1	1	0]
1	0	1	.
0	1	1	

4. Find a QR decomposition of the matrix

	[1	0	2]
A =	0	1	1	.
	1	2	0	

5. * Use the Gram–Schmidt orthogonalization process to obtain an orthonormal basis for the column space of the matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 2 & 0 & 2 \\ -1 & 1 & 0 & 1 \end{bmatrix} .$$