1. Verify that the vectors

$$
v_{1}=\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right], \quad, v_{3}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

form an orthogonal basis for \mathbb{R}^{3} with respect to the dot-product. Also express

$$
\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right]
$$

as a linear combination of v_{1}, v_{2}, v_{3}.
2. Consider \mathbb{R}^{3} with the dot-product. Let

$$
v=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

be a nonzero vector in \mathbb{R}^{3}. Find a basis for the subspace $W=v^{\perp}$.
3. Let \langle,$\rangle be an inner product on \mathbb{R}^{n}$. For a unit vector $u \in \mathbb{R}^{n}$ and any vector $v \in \mathbb{R}^{n}$, we define the orthogonal projection of v on u by:

$$
\pi_{u}(v)=\langle v, u\rangle u
$$

Prove that $d\left(\pi_{u}(v), v\right) \leq d(\alpha u, v)$ for any $\alpha \in \mathbb{R}$.
4. (a) Find the orthogonal projection of

$$
v=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

onto the line $y=2 x$.
(b) Find the orthogonal projection of

$$
\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \quad \text { onto the line } c\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]
$$

where $c \in \mathbb{R}$.
5. * Can you give a proof of Question 3 using calculus?

