1. For

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { and } \quad y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

in \mathbb{R}^{2}, we define

$$
\langle x, y\rangle:=y_{1}\left(2 x_{1}+x_{2}\right)+y_{2}\left(x_{1}+x_{2}\right) .
$$

Show that this defines an inner product on \mathbb{R}^{2}.
2. *(Cauchy-Schwarz Inequality) Let \langle,$\rangle be an inner product on \mathbb{R}^{n}$. Show that

$$
|\langle x, y\rangle| \leq\|x\|\| \| y \|,
$$

for all $x, y \in \mathbb{R}^{n}$. Further, equality holds if and only if one is a multiple of the other (that is, x and y are linearly dependent).
3. (Pythogoras Theorem) Let \langle,$\rangle be an inner product on \mathbb{R}^{n}$. Let v_{1}, \ldots, v_{k} be a set of vectors such that they are pairwise orthogonal, that is, $\left\langle v_{i}, v_{j}\right\rangle=0$ for all $i \neq j$, then

$$
\left\|\sum_{i=1}^{k} v_{i}\right\|^{2}=\sum_{i=1}^{k}\left\|v_{i}\right\|^{2} .
$$

4. Let \langle,$\rangle be an inner product on \mathbb{R}^{n}$. Show that any set $S=\left(v_{1}, \ldots, v_{k}\right)$ of nonzero orthogonal vectors in \mathbb{R}^{n} is linearly independent.
5. * Show that an $n \times n$ matrix A over \mathbb{R} is orthogonal (ie. $A A^{t}=A^{t} A=I_{n}$) if and only if its columns form an orthonormal basis of \mathbb{R}^{n} with respect to dot-product.
