- 1. Let $y = ax^2 + bx + c$. In each of the cases below, draw a rough sketch of y:
 - (i) $b^2 4ac > 0$ and a > 0, (ii) $b^2 4ac > 0$ and a < 0,
 - (iii) $b^2 4ac = 0$ and a < 0, (iv) $b^2 4ac = 0$ and a > 0,
 - (v) $b^2 4ac < 0$ and a < 0, (vi) $b^2 4ac < 0$ and a < 0.

Distinguish each w.r.t. to y attaining its global maximum or minimum.

- 2. Let $a \neq 0$, and $z = ax^2 + bxy + cy^2$
 - (a) Show that $z = \frac{1}{4a} \left[4a^2(x \frac{by}{2a})^2 + (4ac b^2)y^2 \right].$
 - (b) Can you identify the critical points of z as (max, min, saddle or ??) when :
 - i. $4ac b^2 < 0$
 - ii. $4ac b^2 > 0$ and a > 0
 - iii. $4ac b^2 > 0$ and a < 0
 - iv. $4ac b^2 = 0$
 - (c) Apply the second derivate test to $z = f(x, y) = ax^2 + bxy + cy^2$ and verify the criteria for critical points obtained above.
- 3. Let $f(x,y) = x + y + \frac{1}{xy}$ with x > 0, y > 0. Decide if the function has a maximum and minimum.
- 4. Vijayalakshmi, a fruit vendor sells apples and oranges. She wants to order x tons of apples and y tons of oranges, which she gets free from a friend. The minimum order for apples though is 3 tons and the minimum order for oranges id 2 tons. The vendor's wearhouse can hold at 10 tons of fruit. She can sell the fruit for

$$(x-4)^2 + (y-4)^2 + y.$$

How much should she order in order to maximize his profit ?

5. Extra Credit Let $f : \mathbb{R} \to \mathbb{R}$. Suppose f is differentiable two times, then show that

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f'(\xi)$$

for any $x, x_0 \in \mathbb{R}$ and ξ is a point between x and x_0 . In addition, if the second derivative of f is continuous, $f'(x_0) = 0$, $f''(x_0) < 0$, then show that f has a local maximum at x_0 .