1. Let $y=a x^{2}+b x+c$. In each of the cases below, draw a rough sketch of y :
(i) $b^{2}-4 a c>0$ and $a>0$, (ii) $b^{2}-4 a c>0$ and $a<0$,
(iii) $b^{2}-4 a c=0$ and $a<0$, (iv) $b^{2}-4 a c=0$ and $a>0$,
(v) $b^{2}-4 a c<0$ and $a<0$, (vi) $b^{2}-4 a c<0$ and $a<0$.

Distinguish each w.r.t. to y attaining its global maximum or minimum.
2. Let $a \neq 0$, and $z=a x^{2}+b x y+c y^{2}$
(a) Show that $z=\frac{1}{4 a}\left[4 a^{2}\left(x-\frac{b y}{2 a}\right)^{2}+\left(4 a c-b^{2}\right) y^{2}\right]$.
(b) Can you identify the critical points of z as (max, min, saddle or ??) when :
i. $4 a c-b^{2}<0$
ii. $4 a c-b^{2}>0$ and $a>0$
iii. $4 a c-b^{2}>0$ and $a<0$
iv. $4 a c-b^{2}=0$
(c) Apply the second derivate test to $z=f(x, y)=a x^{2}+b x y+c y^{2}$ and verify the criteria for critical points obtained above.
3. Let $f(x, y)=x+y+\frac{1}{x y}$ with $x>0, y>0$. Decide if the function has a maximum and minimum.
4. Vijayalakshmi, a fruit vendor sells apples and oranges. She wants to order x tons of apples and y tons of oranges, which she gets free from a friend. The minimum order for apples though is 3 tons and the minimum order for oranges id 2 tons. The vendor's wearhouse can hold atmost 10 tons of fruit. She can sell the fruit for

$$
(x-4)^{2}+(y-4)^{2}+y
$$

How much should she order in order to maximize his profit?
5. Extra Credit Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Suppose f is differentiable two times, then show that

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime}(\xi)
$$

for any $x, x_{0} \in \mathbb{R}$ and ξ is a point between x and x_{0}. In addition, if the second derivative of f is continuous, $f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)<0$, then show that f has a local maximum at x_{0}.

