1. (Gradient \perp level curve) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, be given by $f(x, y)=x^{2}+y^{2}$
(a) Draw the level curve corresponding to $f(x, y)=1$ and the Gradient vector $\nabla f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Explain your observations.
(b) Draw the curve $\left\{g(t):=\left(\cos \left(\frac{\pi}{2} t\right), \sin \left(\frac{\pi}{2} t\right)\right): t \in[0,1]\right\}$.
(c) Find $h:[0,1] \rightarrow \mathbb{R}$ given by $h(t)=f(g(t))$ and show that $h^{\prime}(t)=0$
(d) Conclude that the Gradient vector $\nabla f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is perpendicular to the level curve of f at 1 .
2. (Directional Derivative) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, be given by $f(x, y)=x^{2} y$
(a) Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$.
(b) Find $\nabla f(1,1)$ and directional derivative $\nabla f(1,1) \cdot v=\nabla f(1,1)^{T} v$, along v, where $v=\frac{1}{\sqrt{5}}\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
(c) Express $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ as directional derivatives along some suitable vector v. Explain the meaning of the term directional derivative.
3. (Gradient is the direction of steepest ascent) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(a) Let $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ be a unit vector. Express the directional derivative of f along v in terms of $v_{1}, v_{2}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$
(b) Find the direction v, along which the directional derivative is maximum.
4. Let us meet Squirmy, she is a ladybug. One day Squirmy decides to explore the fabulous ICTS campus.
(a) At first, Squirmy starts walking along the curve C in the $x-y$ plane, given by the equation:

$$
\frac{x^{2}}{400}+\frac{y^{2}}{100}=1
$$

On reaching $(12,8)$, she is supposed to start walking in a direction perpendicular to C. What direction should she move in ?
(b) Next Squirmy jumps into the Kitchen via the windo. She lands on a hot plate where dosai is being made, Ouch!!. She is at a position $(1,1)$ and suppose the temperature is given by

$$
T(x, y)=1000 \mathrm{e}^{-x^{2}-y^{4}}
$$

(i) What direction should she move in order to decrease the temperature the fastest ?
(ii) Instead, she moves in the direction $(2,1)$. Use a linear approximation to estimate the temperature of the plate when Squirmy gets to $(1.02,1.01)$.
5. (Extra Credit) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(a) Suppose f is a differentiable function and $C=f\left(x_{0}, y_{0}\right)$. Show that the Gradient vector $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the level curve at C.
(b) Suppose $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$. Show that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exists at $(0,0)$ but f is not continous at $(0,0)$.

