(1) Let $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$.
(a) Find the eigenvalues of A. Find the corresponding eigenvectors.
(b) Find a basis for the corresponding eigenspaces.
(2) Find eigenvalues and corresponding eigenvectors of the matrix $\left(\begin{array}{ccc}-2 & -4 & 2 \\ -2 & 1 & 2 \\ 4 & 2 & 5\end{array}\right)$. Also, find the corresponding eigenspaces, and bases for these eigenspaces.
(3) Let $v_{1}, v_{2}, \ldots, v_{k}$ be eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ of a matrix A. Show that $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a linearly independent set.
(4) Let

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Find a matrix P such that $P^{-1} A P$ is diagonal, and find a formula for A^{30}.
(5) Let P be an invertible $n \times n$ matrix. Show that eigenvalues of a $n \times n$ matrix A are same as the eigenvalues of the matrix $P^{-1} A P$.

