(1) Calculate the dimension of the column space (or rank) of the following matrix.

$$
A=\left[\begin{array}{cccc}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2
\end{array}\right]
$$

(2) Consider the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -1 & 2 \\
1 & -1 & 1 & 1 \\
2 & 1 & 0 & 3 \\
-1 & 4 & -3 & 0
\end{array}\right]
$$

(a) Compute a basis for the null space of $A$.
(b) Compute a basis for the range of $A$.
(c) Compute a basis for the range of $A^{t}$.
(3) Find eigenvalues and corresponding eigenvectors of the matrix $\left(\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right)$.
(4) Let $A$ be a $n \times n$ matrix over $\mathbb{R}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of $A$. Show that the set

$$
E_{\lambda}=\left\{X \in \mathbb{R}^{n}: A X=\lambda X\right\}
$$

forms a subspace of $\mathbb{R}^{n}$. (This subspace is called the eigenspace corresponding to $\lambda$ ).
(5) * Do $A$ and $A^{t}$ have the same eigenvalues? The same eigenvectors?

