(1) Calculate the dimension of the column space (or *rank*) of the following matrix.

$$A = \begin{bmatrix} 0 & 16 & 8 & 4 \\ 2 & 4 & 8 & 16 \\ 16 & 8 & 4 & 2 \\ 4 & 8 & 16 & 2 \end{bmatrix}$$

(2) Consider the matrix

.

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 \\ 1 & -1 & 1 & 1 \\ 2 & 1 & 0 & 3 \\ -1 & 4 & -3 & 0 \end{bmatrix} .$$

- (a) Compute a basis for the null space of A.
- (b) Compute a basis for the range of A.
- (c) Compute a basis for the range of A^t .
- (3) Find eigenvalues and corresponding eigenvectors of the matrix $\begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$.
- (4) Let A be a $n \times n$ matrix over \mathbb{R} and $\lambda \in \mathbb{R}$ be an eigenvalue of A. Show that the set $E_{\lambda} = \{X \in \mathbb{R}^n : AX = \lambda X\}$

forms a subspace of \mathbb{R}^n . (This subspace is called the *eigenspace* corresponding to λ).

(5) * Do A and A^t have the same eigenvalues? The same eigenvectors?