Name _

(1) Let

$$v_1 = \begin{bmatrix} -3\\-1\\1 \end{bmatrix}; \quad v_2 = \begin{bmatrix} -2\\-1\\2 \end{bmatrix}; \quad v_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}; \quad w = \begin{bmatrix} -6\\13\\-2 \end{bmatrix}.$$

Find a linear combination of v_1 , v_2 , and v_3 that equals w.

(2) Determine whether the following three vectors are linearly dependent or linearly independent in \mathbb{R}^3 .

	5			17				4	
u =	-3	,	v =	-5	,	and	w =	8	
	2			5				-2	

If these vectors are linearly dependent, describe a nontrivial linear combination that yields the zero vector.

(3) Determine whether the following vectors form a basis of \mathbb{R}^3 :

$v_1 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \qquad v_2 =$	$\left[\begin{array}{c}0\\1\\1\end{array}\right]$	$v_3 =$	$\begin{bmatrix} 0\\0\\3 \end{bmatrix}$	
---	---	---------	---	--

(4) Find a basis for the subspace

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : 3a + 2b - c = 0 \right\}$$

of the $M_{2\times 2}$, the space of all 2×2 matrices over \mathbb{R} .

(5) * Find a basis for the space of all real 3×3 symmetric matrices.