(1) Let

$$
v_{1}=\left[\begin{array}{r}
-3 \\
-1 \\
1
\end{array}\right] ; \quad v_{2}=\left[\begin{array}{r}
-2 \\
-1 \\
2
\end{array}\right] ; \quad v_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] ; \quad w=\left[\begin{array}{r}
-6 \\
13 \\
-2
\end{array}\right] .
$$

Find a linear combination of v_{1}, v_{2}, and v_{3} that equals w.
(2) Determine whether the following three vectors are linearly dependent or linearly independent in \mathbb{R}^{3}.

$$
u=\left[\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right], \quad v=\left[\begin{array}{r}
17 \\
-5 \\
5
\end{array}\right], \quad \text { and } \quad w=\left[\begin{array}{r}
4 \\
8 \\
-2
\end{array}\right] .
$$

If these vectors are linearly dependent, describe a nontrivial linear combination that yields the zero vector.
(3) Determine whether the following vectors form a basis of \mathbb{R}^{3} :

$$
v_{1}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]
$$

(4) Find a basis for the subspace

$$
W=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: 3 a+2 b-c=0\right\}
$$

of the $M_{2 \times 2}$, the space of all 2×2 matrices over \mathbb{R}.
(5) $*$ Find a basis for the space of all real 3×3 symmetric matrices.

