1. Let $f(x, y)=x^{2}+x y+y^{2}+3 x-3 y+4$
(a) Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial^{2} x}, \frac{\partial^{2} f}{\partial^{2} y}$ and $\frac{\partial^{2} f}{\partial x \partial y}$.
(b) Find all critical points of $f(x, y)$ in the plane.
(c) Use the second derivative test to determine (if possible) whether each critical point is a local maximum, a local minimum or a saddle point.
2. Let $f(x, y)=y^{2}-2 x^{2} y+2 x^{3}$.
(a) Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial^{2} x}, \frac{\partial^{2} f}{\partial^{2} y}$ and $\frac{\partial^{2} f}{\partial x \partial y}$.
(b) Find all critical points of $f(x, y)$ in the plane.
(c) Use the second derivative test to determine (if possible) whether each critical point is a local maximum, a local minimum or a saddle point.
(d) Find the maximum and minium values taken by $f(x, y)$ on the line segment C from $(0,1)$ to $(1,0)$.
3. Let $f(x, y)=x^{2}+\frac{2}{3} y^{3}+5 y^{2}+8 y+6$

(a) Are there critical points of f that lie inside C ?
(b) Are there critical points of f that lie on the circle C ?
4. Vijayalakshmi, a fruit vendor sells apples and oranges. She wants to order x tons of apples and y tons of oranges, which she gets free from a friend. The minimum order for apples though is 3 tons and the minimum order for oranges id 2 tons. The vendor's wearhouse can hold atmost 10 tons of fruit. She can sell the fruit for

$$
(x-4)^{2}+(y-4)^{2}+y
$$

How much should she order in order to maximize his profit?

