1. Let (x, y) be a point on the $x-y$ plane.
(a) Write a function $f(x, y)$, giving the square of the distance of (x, y) to the origin.
(b) Draw the level curves corresponding to $f(x, y)=0,1,4,9$
(c) Sketch the intersection of the graph with the $y-z$ plane and with the $x-z$ plane.
(d) Try and sketch the graph of f.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
(a) Suppose $n=2$ and $f(x, y)=x y+x^{2}+y^{2}$. Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\nabla f(0,3)$.
(b) Suppose $n=4, f(x, y, s, t)=\sin (y+s \sin (t)) e^{-(x+s \cos (t))}$. Find $\frac{\partial f}{\partial s}$
(c) Suppose $n=2$ and $f(x, y)=\sin (y) e^{-x}$. Find the directional derivative of f along $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(d) Suppose $n=2, f(x, y)=e^{x-y}, x(u, v)=\sin (u v)$ and $y(u, v)=u^{2}+v^{2}$. Find the $\frac{\partial f}{\partial u}$ when $(u, v)=(0,2)$.
3. $f(x, y)$ is a function of two variables. Below are shown the values of ∇f for some points in the plane. At point P the vector \vec{b} is in bold is not ∇f.

(a) Draw a possible level curve for f which goes through at least 4 of the points at which the gradient is shown.
(b) Does the function increase, decrease or stay the same as you move from $(3,1)$ to $(5,0)$?
(c) Find the directional derivative of f at the point $(3,1)$ in the direction of \vec{b}.
4. Let m be the line $(1,2,1)+t(3,2,-1)$. Let l be the line $(2,-1,2)+u(1,1,2)$. Find the shortest distance between the two lines.
5. (Extra Credit)Let α be the plane $10 x+15 y+6 z=30$ shown below.

Decide with justification whether the following are True, False or Cannot say.
(a) α is normal to the line $(13+10 t, 15+15 t, 6+6 t)$
(b) α is a level surface of the $f(x, y, z)=10 x+15 y+6 z$
(c) α is the graph of the function $f(x, y, z)=10 x+15 y+6 z$
(d) α is the graph of the function $g(x, y)=-\frac{1}{6}(10 x+15 y)$
(e) α is the level set of the function $g(x, y)=-\frac{1}{6}(10 x+15 y)$
6. (Extra Credit) Let $0 \neq v \in \mathbb{R}^{2}, f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{ll}
\frac{x_{1}^{3}}{x_{1}^{2}+x_{2}^{2}} & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\
0 & \text { otherwise }
\end{array} \quad \text { and } g(x)= \begin{cases}\frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\
0 & \text { otherwise }\end{cases}\right.
$$

(a) Decide if f, g have a directional derivative in the direction v at the origin.
(b) Decide if f, g is continuous at the origin.
(c) Decide whether f, g are differentiable at the origin.

