- 1. Define what is meant by a function $f : \mathbb{R} \to \mathbb{R}$. Determine whether the rules below define functions from \mathbb{R} to \mathbb{R} . In each case explain why (or why not) the given rule defines a function from \mathbb{R} to \mathbb{R}
 - (a) f(x) = |x 1| if x < 4 and f(x) = |x| 1 if x > 2.
 - (b) $f(x) = \frac{((x+3)^2 9)}{x}$ if $x \neq 0$ and f(x) = 6 if x = 0.
 - (c) $f(x) = \sqrt{x^2}$ if $x \ge 2$, f(x) = 0 if $0 \le x \le 4$, and f(x) = -x if x < 0.
- 2. Define what is meant by domain of a function f. Find the domain of the function:

(a)
$$f(x) = 7 + \sqrt{25 - \frac{(x+1)^2}{4}}$$
.
(b) $f(x) = \sqrt{x} + \frac{1}{\sqrt{1-x^2}}$.

3. Negate the below statements and express the negations in English,

- (a) Every student in this class has taken Mathematics or Physics in Class XII.
- (b) Every student in this class has taken Mathematics and Biology in Class XII.
- (c) All classrooms in the main building have at least one chair that is broken
- (d) No classroom in the ground floor has only chairs that are not broken.
- (e) In every college there is a student who has taken neither Mathematics nor Biology in high school.
- 4. Consider the following statements:
 - (a) $f(x, y) \neq 0$ whenever $x \neq 0$ and $y \neq 0$.
 - (b) For all $M \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that $|f(x)| \ge M$.
 - (c) For all $M \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that for all y > x we have f(y) > M.
 - (d) For all $x \in \mathbb{R}$ there exists $y \in \mathbb{R}$ such that f(y) > f(x).
 - (e) For every $k \ge 1$ there exists $x_0 \in \mathbb{R}$ such that $|f(x)| < \frac{1}{k}$ for all $x > x_0$.
 - (f) For every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x) f(y)| < \epsilon$ whenever $|x y| < \delta$.

(i) For each statement (a) - (g) above, give an example of function that satisfies the conditions given in the statement. (ii) Provide the negation of each of the above statements.

- 5. (*Extra Credit*) Let A and B be finite sets. Define what is meant by 1-1 $f : A \to B$ and what is meant by an onto function from $f : A \to B$.
 - (a) Find the total number of functions from A to B.
 - (b) Does there always exists a 1 1 and onto function from A to B?
 - (c) Suppose |A| = |B| find the number of onto functions from A to B.