(1) Determine all proper subspaces of \mathbb{R}^{2}. Show that distinct proper subspaces have only the zero vector in common.
(2) Find a basis for the space of all real $n \times n$ symmetric matrices.
(3) Let $W \subseteq \mathbb{R}^{4}$ be the space of solutions of the system of linear equations $A X=0$, where

$$
A=\left[\begin{array}{llll}
2 & 1 & 2 & 3 \\
1 & 1 & 3 & 0
\end{array}\right]
$$

Find a basis for W.
(4) Consider the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -1 & 2 \\
1 & -1 & 1 & 1 \\
2 & 1 & 0 & 3 \\
-1 & 4 & -3 & 0
\end{array}\right]
$$

(a) Compute a basis for the range of A.
(b) Compute a basis for the range of A^{t}.
(c) Compute a basis for the null space of A.
(5) Calculate the dimension of the column space (or rank) of the following matrix.

$$
A=\left[\begin{array}{cccc}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2
\end{array}\right]
$$

