(1) Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right]
$$

Find the inverse of A, if it exists.
(2) Solve the following system of equations using LU decomposition.

$$
\begin{aligned}
x+2 y+4 z & =3 \\
3 x+8 y+14 z & =13 \\
2 x+6 y+13 z & =4
\end{aligned}
$$

(3) Solve the following system of equations using LU decomposition.

$$
\begin{aligned}
3 x+y+6 z & =0 \\
-6 x-16 z & =4 \\
8 y-17 z & =17
\end{aligned}
$$

(4) Let W be the set of all linear combinations of columns of A where:

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right], \quad b=\left[\begin{array}{c}
10 \\
3 \\
3
\end{array}\right]
$$

Does b belong to W ?
(5) Consider the vectors

$$
u=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right], \quad v=\left[\begin{array}{r}
2 \\
1 \\
-3
\end{array}\right], \quad \text { and } \quad w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Determine whether these vectors are linearly independent or linearly dependent.

