1. Find the equation of the tangent line to the curve $x^{2}+x y+y^{2}=7$
at the point $(2,1)$. Give your answer in the form $y=m x+b$. Use the tangent line approximation to find estimate of the y -coordinate when the x -coordinate is 2.01 .
2. The graph of the function $y=f(x)$ on the interval $[-2,12]$ is given below.

(a) Find $\lim _{x \rightarrow 7} \frac{f(x)}{x}$.
(b) Find sub-intervals where f is continuous.
(c) Let D be the domain of f^{\prime}. Find D, sub-intervals where f^{\prime} is increasing and draw a rough sketch of the graph of $f^{\prime}: D \rightarrow \mathbb{R}$.
3. Find the maximum and minimum of the function $f(x)=x^{2}-6 x+10$, on $[0,4]$.
4. Suppose Indira has a wire of length $l \mathrm{~cm}$. Indira cuts the wire into 2 pieces.With one of the pieces Indira makes a circle and makes a square with the other. Find the minimum total area occupied by both circle and square.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{4}-4 x^{2}$. Find the
(a) Zeros of f.
(b) Critical points and characterise them as local maxima, local minima and inflection points.
6. Extra Credit: A train is backing away from a vertical wall. The headlight of the train is pointed at the wall, and the beam from the headlight is in the shape of a right circular cone. The headlight illuminates a circular region on the wall, which is the base of the cone of illumination. The lateral surface of the cone of illumination makes an angle of 45° with the horizontal line joining the headlight and the center of the circle on the wall. When the radius of this circle is 4 feet, the area of the circle is increasing at a rate of 24π square feet per second. How fast is the train moving away at that time?
