Practice Problems:

1. Find the domain of the funciton $f(x)=\frac{\sqrt{x^{2}-4}}{5-\sqrt{36-x^{2}}}$.
2. Let $f(x)=\left\{\begin{array}{ll}1 & \text { if } x<0 \\ x & \text { if } 0<x<1 \\ 2-x & \text { if } 1<x<3 \\ x-4 & \text { if } x>3\end{array}\right.$.
(a) Is it possible to define f at $x=0$ in such a way that f becomes continuous at $x=0$?
(b) Is it possible to define f at $x=1$ in such a way that f becomes continuous at $x=1$?
(c) Is it possible to define f at $x=3$ in such a way that f becomes continuous at $x=3$?
3. Give an example of a function defined on $[0,1]$ which has no maximum and no minimum on the interval.
4. We say $\lim _{x \rightarrow 0} f(x)=0$ if

$$
\text { For every } \epsilon>0 \text { there exists } \delta>0 \text { such that }|f(x)|<\epsilon \text { whenever }|x|<\delta .
$$

Consider the following statements:
(a) For every $\epsilon>0$ there exists $\delta>0$ such that for all $x \in \mathbb{R},|x|<\delta$ implies $|f(x)|<\epsilon$.
(b) For every $\delta>0$ there exists $\epsilon>0$ such that for all $x \in \mathbb{R},|x|<\delta$ implies $|f(x)|<\epsilon$.
(c) There exists $\delta>0$ such that for all $\epsilon>0$ and for all $x \in \mathbb{R},|x|<\delta$ implies $|f(x)|<\epsilon$.
(d) For every $\epsilon>0$ and for all $x \in \mathbb{R}$, there exists $\delta>0$ such that $|x|<\delta$ implies $|f(x)|<\epsilon$.

Decide which of the above versions are equivalent to the definition of $\lim _{x \rightarrow 0} f(x)=0$ and which are not. Give an example of f that satisfies each of the above conditions.
5. Find a so that the function f is continuous at origin.

$$
f(x)= \begin{cases}\frac{1-\cos 4 t}{t^{2}} & \text { if } t<0 \\ \frac{2(x+8)}{\sqrt{16-\sqrt{x}}} & \text { if } t>0 \\ a & \text { if } t=0\end{cases}
$$

6. In economics, The usefulness or utility of amounts x and y of two capital goods G_{1} and G_{2} is sometimes measured by a function $U(x, y)$. For example, G_{1} and G_{2} might be the two chemicals pharmaceutical company needs to have on hand and $U(x, y)$ the cost of manufacturing a product whose synthesis requires different amounts of the chemicals depending on the process used. The company wants to minimize U when each unit of G_{1} costs Rs 2 per kilogram, each unit of G_{2} costs Rs 1 per kilogram, and the total amount allocated for the purchase of G_{1} and G_{2} together is Rs 30,
\qquad
7. Given $A=\{1,2,3,4,5,6\}$ and $B=\{0,1,4,5\}$. Find the following sets.
$A \backslash B, B \backslash A, A \times B, \mathcal{P}(B)$ and $B \times \mathbb{N}$
8. Solve the equation $|x-2|^{2}+3|x-2|-4=0$.
9. $f(x, y)$ is a linear function of two variables.

(a) Find an expression for $f(x, y)$.
(b) Draw the level curve of f at level 0
10. Find the minimum value of $x_{1}+x_{2}$, subject to the constraint $x_{1} x_{2}=16$
11. Find the maximum value of $x_{1} x_{2}$ subject to the constraint $x_{1}+x_{2}=16$.
12. Let $g(x, y)=x y+\frac{8}{x}+\frac{1}{y}$
(a) Find all critical points of $f(x, y)$ in the plane.
(b) Use the second derivative test to determine (if possible) whether each critical point is a local maximum, a local minimum or a saddle point.
13. Find the gradient of the function $r(x, y)=\sqrt{\left(x^{2}+y^{2}\right)}$ and $\rho(x, y, z)=\sqrt{\left(x^{2}+y^{2}+z^{2}\right)}$. Find the gradient of $\frac{1}{\rho}$.
