\qquad

1. Prove that if A and B are any two square matrices, and $A B$ is nonsingular, then both A and B are nonsingular.
2. Show that $\operatorname{rank}(A)=\operatorname{rank}\left(P^{-1} A P\right)$ for any square matrix A and any invertible matrix P.
3. Let

$$
A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 0 & -1 \\
1 & 2 & 3
\end{array}\right] .
$$

(a) Show that the eigenvalues of A are 1 and 2 .
(2) Determine a basis of \mathbb{R}^{3} of eigenvectors. Then give an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
4. Consider

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

as a matrix over \mathbb{C}.
(a) Find the characteristic polynomial of A. Find the eigenvalues of A.
(b) Find an invertible complex matrix P such that $P^{-1} A P$ is diagonal.
5. Find all 2×2 real matrices such that $A^{2}=I$, and describe geometrically the way they operate by left multiplication on \mathbb{R}^{2}.

