Question 1: Use Shifts and Expansion techniques to graph the following function: $y=\frac{1}{2}\left(\frac{x-1}{3}\right)^{2}-4$

Question 2: A particle is moving along the curve $y^{3}+y-x^{2}=9$. At time $t=0$, the particle is at the point (1,2). The x-coordinate of the particle satisfies $x(t)=1+4 t+\sin (\pi t)$. Let $y(t)$ denote the y-coordinate of the particle at time t. Find $\frac{d y}{d t}$ at time $t=0$.

Question 3: Let $\alpha>0$. Let $f(x)=|x|^{\alpha}$ when x is rational, and $f(x)=0$ when x is irrational. For what values of $\alpha>0$ is f differentiable at $x=0$?

Question 4: $f(x)=x e^{-x}$. Find the

1. Zeros of f.
2. Critical points and characterise them as local maxima, local minima and inflection points.
3. interval where f is increasing.
4. interval where f^{\prime} increasing.
5. interval where the graph is concave down.
6. rough-sketch of graph of f
