May 7th, 2018	Name	
SWMS-Homework in Calculus		Page 1 of 4

Question 1: Use Shifts and Expansion techniques to graph the following function: $y = \frac{1}{2}(\frac{x-1}{3})^2 - 4$

May 7th, 2018	Name	
SWMS-Homework in Calculus	Pa	ge 2 of 4

Question 2: A particle is moving along the curve $y^3 + y - x^2 = 9$. At time t = 0, the particle is at the point (1, 2). The x-coordinate of the particle satisfies $x(t) = 1 + 4t + \sin(\pi t)$. Let y(t) denote the y-coordinate of the particle at time t. Find $\frac{dy}{dt}$ at time t = 0.

May 7th, 2018	Name
SWMS-Homework in Calculus	Page 3 of 4

Question 3: Let $\alpha > 0$. Let $f(x) = |x|^{\alpha}$ when x is rational, and f(x) = 0 when x is irrational. For what values of $\alpha > 0$ is f differentiable at x = 0?

Question 4: $f(x) = xe^{-x}$. Find the

- 1. Zeros of f.
- 2. Critical points and characterise them as local maxima, local minima and inflection points.
- 3. interval where f is increasing.
- 4. interval where f' increasing.
- 5. interval where the graph is concave down.
- 6. rough-sketch of graph of f