Question 1: Prove that elementary matrices are invertible. Show that their inverses are also elementary matrices.

Question 2: Consider the three planes

$$
x+2 y+5 z=7 \quad 2 x-y=-1 \quad 2 x+y+4 z=k
$$

(a) For which values of the parameter k do these three planes have at least one point in common?
(b) Determine the common points.

Question 3: Show that if A^{\prime} is obtained from A by a sequence of elementary row operations, and B^{\prime} is obtained from B by applying the same sequence of row operations, then the system $A^{\prime} X=B^{\prime}$ has the same solutions as $A X=B$.

Question 4: Find bases for the null space and row space of the matrix

$$
A=\left[\begin{array}{rrr}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right]
$$

\qquad

Practice Problems

Question 5: Define what is meant by the dimension of a subspace. Let W be a subspace of \mathbb{R}^{n}. Give three statements about W that are equivalent to the statement that $\operatorname{dim}(W)=p$.

Question 6: Let A_{1}, A_{2}, A_{3} be the columns of a 4×3 matrix A and let $b=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array} b_{4}\right]^{t}$. Let the row reduced echelon form of the augmented matrix $(A \mid b)$ be

$$
\left(A^{\prime} \mid b^{\prime}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & -0 b_{2}+b_{1} \\
0 & 1 & 0 & b_{2}-2 b_{1} \\
0 & 0 & 1 & -3 b_{3}+b_{1}+7 b_{2} \\
0 & 0 & 0 & 5 b_{4}-19 b_{2}+2 b_{3}-b_{1}
\end{array}\right)
$$

What condition does b need to satisfy such that b is in the $\operatorname{Span}\left\{A_{1}, A_{2}, A_{3}\right\}$? Decide whether $v=$ $\left[\begin{array}{llll}5 & 0 & 0 & 1\end{array}\right]^{t}$ and $w=\left[\begin{array}{llll}0 & -1 & 0 & 1\end{array}\right]^{t}$ are in $\operatorname{Span}\left\{A_{1}, A_{2}, A_{3}\right\}$. Justify.

Question 7: Determine whether the following three vectors are linearly dependent or linearly independent:

$$
u=\left[\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right], \quad v=\left[\begin{array}{r}
17 \\
-5 \\
5
\end{array}\right], \quad \text { and } \quad w=\left[\begin{array}{r}
4 \\
8 \\
-2
\end{array}\right]
$$

If these vectors are linearly dependent, describe a nontrivial linear combination that yields the zero vector.
Question 8: Find a LU decomposition for the following matrix:

$$
A=\left[\begin{array}{rrr}
1 & 2 & 4 \\
3 & 8 & 14 \\
2 & 6 & 13
\end{array}\right]
$$

Question 9: Show that if A is an invertible $n \times n$ matrix, then $A: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ takes a linearly independent set of vectors to another linearly independent set of vectors.

Question 10: Let $A_{m \times n}$ and $B_{n \times p}$ be two matrices. Show that the $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.

