May 8th, 2018	Name	
SWMS-Homework in Linear Algebra		Page 1 of 5

Question 1: Prove that elementary matrices are invertible. Show that their inverses are also elementary matrices.

May 8th, 2018	Name
SWMS-Homework in Linear Algebra	Page 2 of 5

Question 2: Consider the three planes

x + 2y + 5z = 7 2x - y = -1 2x + y + 4z = k

(a) For which values of the parameter k do these three planes have at least one point in common?

(b) Determine the common points.

May 8th. 2018	Name	
SWMS-Homework in Linear Algebra		Page 3 of 5

Question 3: Show that if A' is obtained from A by a sequence of elementary row operations, and B' is obtained from B by applying the **same** sequence of row operations, then the system A'X = B' has the same solutions as AX = B.

Question 4: Find bases for the null space and row space of the matrix

$$A = \left[\begin{array}{rrrr} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{array} \right] \; .$$

Practice Problems

Question 5: Define what is meant by the *dimension* of a subspace. Let W be a subspace of \mathbb{R}^n . Give three statements about W that are equivalent to the statement that $\dim(W) = p$.

Question 6: Let A_1, A_2, A_3 be the columns of a 4×3 matrix A and let $b = [b_1 \ b_2 \ b_3 \ b_4]^t$. Let the row reduced echelon form of the augmented matrix (A|b) be

$$(A'|b') = \begin{pmatrix} 1 & 0 & 0 & -0b_2 + b_1 \\ 0 & 1 & 0 & b_2 - 2b_1 \\ 0 & 0 & 1 & -3b_3 + b_1 + 7b_2 \\ 0 & 0 & 0 & 5b_4 - 19b_2 + 2b_3 - b_1 \end{pmatrix}.$$

What condition does b need to satisfy such that b is in the Span $\{A_1, A_2, A_3\}$? Decide whether $v = \begin{bmatrix} 5 & 0 & 0 & 1 \end{bmatrix}^t$ and $w = \begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}^t$ are in Span $\{A_1, A_2, A_3\}$. Justify.

Question 7: Determine whether the following three vectors are linearly dependent or linearly independent: dent: $\begin{bmatrix} 5 \\ 2 \end{bmatrix} \begin{bmatrix} 17 \\ 2 \end{bmatrix} \begin{bmatrix} 17 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

$$u = \begin{bmatrix} 5\\-3\\2 \end{bmatrix}, \quad v = \begin{bmatrix} 17\\-5\\5 \end{bmatrix}, \quad \text{and} \quad w = \begin{bmatrix} 4\\8\\-2 \end{bmatrix}.$$

If these vectors are linearly dependent, describe a nontrivial linear combination that yields the zero vector.

Question 8: Find a LU decomposition for the following matrix:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{array} \right].$$

Question 9: Show that if A is an invertible $n \times n$ matrix, then $A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ takes a linearly independent set of vectors to another linearly independent set of vectors.

Question 10: Let $A_{m \times n}$ and $B_{n \times p}$ be two matrices. Show that the rank $(AB) \leq \operatorname{rank}(A)$.