$\qquad$

Question 1: Let $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ be a set of points on the plane. Let $a, b \in \mathbb{R}$
(a) Let

$$
Y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right] \text { and } X=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\ldots & \\
x_{n} & 1
\end{array}\right]
$$

Show

$$
\sum_{i=1}^{n}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}=\left(Y-X\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)^{T}\left(Y-X\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)
$$

(b) Identify $a, b$ that minimizes $\sum_{i=1}^{n}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}$ as a solution to

$$
X^{T} X\left[\begin{array}{l}
a \\
b
\end{array}\right]=X^{T} Y
$$

(c) Suppose we are given $\left\{\left(z_{i},\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]\right): 1 \leq i \leq n\right\}$. What linear system does $a, b, c$ have to solve: so as to minimize $\sum_{i=1}^{n}\left(z_{i}-\left(a x_{i}+b y_{i}+c\right)\right)^{2} ?$
Question 2: Let $f(x, y)=\frac{x^{2}}{2}+2 y^{2}$
(a) Can you guess a minima for $f$ ?

1. Draw the level curves of $f$ at levels $1,10,100$.
(b) Let $x^{(0)}=(4,1)$. Find a suitable $t_{k}$ for $k \geq 1$. Calculate $x^{(k)}$ using Gradient Descent algorithm.
(c) Does $x^{(k)}$ converge and if so where ?

Question 3: The following is a histogram for heights of women compared to a normal curve. The average height of women is 63.5 inches and standard deviation is 3 inches. Using the normal

tables approximate
(a) the area under the histogram between 60.5 inches and 66.5 inches.
(b) the area under the histogram above 59 inches.

