Question 1: (a) Let us define the following terms:-

- S is bounded if there exists M such that $|x| \leq M$ for all $x \in S$.
- f is increasing (or strictly increasing) if $f(x)<f(y)$ whenever $x<y$.
(i) Give an Example of S and express the statement: S is not bounded
(ii) Give an Example of f and express the statement: f is not increasing (i.e., the negation of the increasing property).
(b) Find the domain of $g(x)=\sqrt{f(x)}$, where $f(x)=\frac{\sqrt{3-x}}{2+x}$.

Question 2: The plane γ is shown below on the graph.

It is parallel to the x-axis and passes through the points A and B.

1. Find the normal vector \vec{n} to γ and write an equation for γ.
2. Find the distance from the point $(3,-3,1)$ to γ.

Question 3 Let $f(x, y)=x^{2}-2 x^{3}+3 y^{2}+6 x y$
(a) Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial^{2} x}, \frac{\partial^{2} f}{\partial^{2} y}$ and $\frac{\partial^{2} f}{\partial x \partial y}$.
(b) Find all critical points of $f(x, y)$ in the plane.
(c) Use the second derivative test to determine (if possible) whether each critical point is a local maximum, a local minimum or a saddle point.

Question 4 Meet Squirmy, she is a ladybug. One day Squirmy decides to explore the fabulous ICTS campus.
(a) At first, Squirmy starts walking along the curve C in the $x-y$ plane, given by the equation:

$$
\frac{x^{2}}{400}+\frac{y^{2}}{100}=1
$$

On reaching $(12,8)$, she is supposed to start walking in a direction perpendicular to C. What direction should she move in ?
(b) Next Squirmy jumps into the Kitchen via the windo. She lands on a hot plate where dosai is being made, $\boldsymbol{O u c h}!$!. She is at a position $(1,1)$ and suppose the temperature is given by

$$
T(x, y)=1000 \mathrm{e}^{-x^{2}-y^{4}}
$$

(i) What direction should she move in order to decrease the temperature the fastest ?
(ii) Instead, she moves in the direction $(2,1)$. Use a linear approximation to estimate the temperature of the plate when Squirmy gets to $(1.02,1.01)$.

