Question 1: Find whether the following set of vectors $S = \{v_1, v_2, v_3\}$ is linearly independent or not, where

$$v_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \quad v_3 = \begin{bmatrix} 1\\-2\\4 \end{bmatrix}.$$

Question 2: Find the eigenvalues and eigenvectors for the matrix

$$A = \left[\begin{array}{rrrr} 2 & 0 & 0 \\ 3 & -4 & -3 \\ -3 & 6 & 5 \end{array} \right].$$

May 10th, 2018	Name	
SWMS-Homework in Linear Algebra		Page 3 of 4

Question 3: Let X be an eigenvector of an $n \times n$ matrix A, with nonzero eigenvalue λ . Prove that if A is invertible, then X is also an eigenvector of A^{-1} , with eigenvalue λ^{-1} .

May 10th, 2018	Name	
SWMS-Homework in Linear Algebra		Page 4 of 4

Question 4: Show that 0 is an eigenvalue of a matrix A if and only if A is singular, i.e. det(A) = 0.